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THE EVALUATION OF ZEROS OF HIGH-DEGREE POLYNOMIALS
By F. W. J. OLVER, The National Physical Laboratory

(Communicated by E. C. Bullard, F.R.S.—Received 6 July 1951)
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EE The practical application of the classical numerical methods for solving polynomial equations

presents special difficulties in the case of polynomials of high degree. The theoretical and practical
aspects of these difficulties are here considered in detail, together with the consequent modifications
imposed upon the methods. The treatment of the whole subject is intended to be as comprehensive
as possible and comparisons are made of the efficacy and speed of the various processes of solution.

INTRODUCTION

The history* of the numerical evaluation of zeros of polynomials of arbitrary degree reveals
that the subject received thorough attention from the early mathematicians. With perhaps
the exception of Aitken’s elegant generalization of Bernoulli’s process, comparatively little
has been discovered during the last hundred years which is fundamentally new and of
practical importance. Indeed, as far as polynomials of degrees greater than six are con-

/ |\
A B

2 cerned, nearly every useful known general method which is suitable for use with desk
S E calculating machines is equivalent to one of the following: (i) Newton’s rule, (ii) the root-
M= squaring process (including its extensions), or (iii) the Aitken-Bernoulli process. Never-
mQ theless, little research appears to have been directed towards attaining technical perfection
E 8 in the application of these standard methods. Few writers seem to have carried out the

complete numerical solution of a polynomial of degree greater than ten; almost all appear
to be unaware of several difficulties arising in practice, which are peculiar to high-degree
polynomials. :
The main purpose of the present work is to consider the practical application of general
methods to polynomials of degree greater than about six. For polynomials of lower degree

PHILOSOPHICAL
TRANSACTIONS
OF

* For an account of this see, for example, Whittaker & Robinson (1944, chap. 6).
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386 F. W. J. OLVER ON THE

various special methods exist, the study of which comprises a separate subject and is outside
the scope of this paper. The conclusions drawn here are based on experience gained during
the past few years at the Mathematics Division, National Physical Laboratory, in the
solution of polynomials of degrees ranging from six to twenty-four.

Although the paper has been written primarily for the computer using desk calculating
machines, much of it is applicable to the solution of high-degree polynomials using any
equipment. This is particularly true, for example, in the sections which deal with the
difficulties arising from the presence of zeros which are close together; difficulties that occur
more often as the degree is increased and which are bound to manifest themselves whatever
equipment is employed. In particular, analogue machines such as isographs can be
expected to yield meaningful direct approximations only to the zeros of well-conditioned
polynomials (that is, those polynomials whose zeros are not over-sensitive to small changes
in the coefficients), whereas in practice ill-conditioned polynomials occur quite frequently.
This aspect is further considered in § 3.

The paper is divided into three parts. Parts A and B correspond to the natural classes of
the available methods, namely, the direct and the indirect or iterative methods. The latter
class needs little explanation; it comprises all processes of successive approximation. Using
a direct method some or all of the zeros can be evaluated to any desired accuracy by a single
application of the process, provided a sufficient number of significant figures is retained
during the calculations.

In parts A and B it is supposed that the coeflicients of the polynomial are real and known
exactly. The latter condition will not, of course, be fulfilled in many of the physical problems
in which the polynomials arise, but even then it is convenient to regard the given coefficients
as exact during the process of solution. An a posterior: examination of the influence upon the
zeros of rounding or observational errors in the coefficients can be made with the aid of
simple formulae stated in part C. Also included in the third part is a brief dlscussmn of the
solution of polynomials with complex coefficients.

ParT A. DIRECT METHODS

There are three direct methods of i 1mportance
(). Inverse interpolation.
(ii) The Aitken-Bernoulli processes. -
(iii) The root-squaring process (including its extensions for the determination of the
phases of the zeros). ' »
Tabulation of the polynomial followed by inverse interpolation is an effective means of
evaluating real zeros, especially if a multi-register adding-listing machine (e.g. a National
accounting machine) is available. If, however, there are present several complex zeros
whose values are also required, a knowledge of the real zeros is seldom of much assistance
and it is preferable to employ some other method from the start.
Method (ii), which is described and illustrated in the next section, can sometimes be
employed advantageously. It is, however, far exceeded in importance by method (iii),
a full discussion of which is given in §§ 2 to 5.
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(1) The Aitken-Bernoulli processes

A detailed account of these methods has been given by Aitken (1926). The basis of
Bernoulli’s method is that if the polynomial

J(x) = ag+a,x+ayx%+ ... +a,x" (1-1)

has z simple zeros x, %,, ..., x, (supposed for convenience to be arranged in non-ascending
order of modulus magnitude), then the difference equation

o iO) Fa it 1) F a2+ a, filt+n) — O (1-2)
has the general solution Ji(®) = 0, %+ 0, xb ... Hw, %L, (1-3)
where w;,w,, ...,w, are arbitrary constants. If |x, |>|x,| (so that x; is necessarily real),
then clearly fil)) ~o;x4  and  fi(¢41)/[f,(8) =%, as t—>c0. - (1-4)

From a sequence of numerical values of f;(¢) constructed by using (1-2) as a recurrence
relation, the value of », can usually be obtained to any prescribed degree of accuracy from
(1-4), provided the sequence is taken far enough. The factor ¥ —x, can be removed from f{x)
and the process repeated to obtain x,, provided |x,|>|x;|. Further applications enable
f(x) to be solved completely, provided its zeros are all real and distinct. _
Aitken’s generalization is designed to determine al/ the zeros from the sequence { f;(¢)}
and to include the cases of complex and multiple zeros. He constructs further sequences

{f,(?)} defined by
| AO S VAORASSY
R WACES VRRWAG) VA VIWAG)
and proves that if Z (¢) = f,(¢-+1)/f,(¢) and | %, | >]| #,,, |, then

Ffs_l(t) (s=2), (1)

s s+1 ¢

Z(8) —~>%,%5... %, as t—00. (1-6)

8§

This result enables us to evaluate numerically the real zeros and the moduli of the complex
zeros. To indicate how the phases-of the complex zeros may be obtained, suppose that x,, x,
are real and distinct, x4, x, are a pair of complex conjugates re* and that | x, | >7>| x5 |.
Then Aitken proves that

Z4(t) ~ x;x,rcos {(¢+1) 0+ a} sec (10 +a), (1-7)
where « is an arbitrary constant, and hence that
{Z3(s+1) Zy(t) + K%}/ Z4(¢) > 2k cos b, (1-8)

where k=x, x,7 and is known by previous application of (1-6).

Let us now consider the practical application of Aitken’s method to high-degree poly-
nomials. The speed of convergence may be considered first. If |x |>|x,,,|, then the
difference between Z(¢) and its asymptotic value is of order |x,,,/x,|*. Each step thus
reduces the relative error in the estimate for x4, ... %, in the ratio | x,,/x, | ; in effect a fixed
number of significant figures is added at each step. On the other hand, it is well known that
after ¢ transformations the root-squaring process has a relative error in the estimate for

X, %, ... x, of order | x,,,/%; |7, where T = 2, so that the number of accurate figures eventually
50-2
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388 F. W. J. OLVER ON THE

doubles with each transformation. Although this simple comparison needs qualifying

(since the labour of an Aitken step is considerably less than that of a root-squaring trans-

formation), it does demonstrate the much superior power of separation possessed by the
root-squaring process, especially when the modulus ratios are close to unity.

The real drawback to Aitken’s process is, however, the severe cancellation that occurs in

- the numerical calculation of the sequences {f;(#)}. Suppose |x,|>|x,,, |, then from (1-6)

we have - St +1) = ¢ fi(8) {1 +¢,(8)}, (1-9)

where ¢, = x,x, ... x, and ¢,(¢) - 0 as {—c0. Hence
l 5@ fi(t4+1) 1 1+¢,(2)

FACINAC {te-1y' 1
= {/(03*{e,(t=1) —¢,()} approximately,
demonstrating the cancellation that takes place on forming f,,,(f). In fact, if R leading
figures of Z (t) and Z ({—1) are identical, then R figures are lost ‘off the front’ in
forming f,.,(¢). Since R increases with ¢, this cancellation becomes increasingly severe as
the work progresses, and a large number of significant figures must be retained in the early
sequences of the process.

Aitken himself is aware of this difficulty and remarks (1926, p. 294): ‘If it were really
necessary to carry the columns to any great length this [cancellation] would constitute a
defect, but we shall show in a later section how, given a few consecutive terms of a slowly
approximating sequence Z,, it is in general possible to derive successively other sequences
which give enormously improved results. Again, to find the smallest roots, we can make use
of the reciprocal equation.” Unfortunately, the former of these devices fails to remove the
difficulty. The derived sequences to which he refers are denoted by Z(#), and if x,, x,,,
and x,,, are real and | x, [ >]|x,,;|>]#,., |, then
R AC R ACE NI

s () - Zs(t) Zs(t—{—l) B s< ))
72 Z01) Z0(0+2) A2ZD

) = -+ D¢

() Z00)  Z0+1) (1),
A being the forward difference operator. Although these sequences eventually do converge
more rapidly than Z(¢), they do not give improved accuracy in the estimate for x;x, ... x,
until Z (#) has begun to settle down to its asymptotic value, and of course it is when
this stage is attained that the cancellations start to occur. It is interesting to note that in
forming Z®(¢) and Z®(¢) further cancellation takes place, and if a fixed number of figures
is retained in Z (#), then eventually the derived sequences Z{V(¢) and Z{?(#) produce no more
accurate results than Z () itself.

The derived sequences applicable to complex zeros are also considered by Aitken; they
are more complicated than (1-10), and have the same limited advantages.

To illustrate the discussion above, extracts from a numerical example are given in
tables 1 and 2. The polynomial being solved is

S(x) = 4x15— 36415 4 139x14 —409x134-1056x12—1916x'! 4 3086x'0 —4618x° 4 3912x8

—4900x7 +3651x8 4101945 + 5644x* 4 5276x% -+ 4090x2 - 1882x |- 420, (1-11)

= {0y

(1-10)
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EVALUATION OF ZEROS OF HIGH-DEGREE POLYNOMIALS 389

the zeros of which are known to be x; = 3%, x, = 3, x; = 2}, x, = 2 and twelve irrational
complex zeros xs, xg, ..., X6, €ach of modulus less than 1-94. The initial values of f;(¢) were
chosen so that w; = w, = ... = 0, = 1, by using Newton’s recurrence formulae for the sums of
powers of the zeros. In the columns headed f,(£), —f,(f) and —f;(¢), the number in italics
gives the power of ten by which the given value is to be multiplied. Thus

/5(30) = —1-79 x 10%,

TABLE 1. AITKEN’S PROCESS

t i) Z\(1) —/2(t) Zy(t) —/5(?) Zy(1)
30 2-11981 5599 16 3-49510 2810 1-05026 8 29 10-46019 1-79 38 96-6
31 7-40897 3456 16 349580 2303 1-09860 0 30 10-47131 173 40 175
32 2-59003 0647 17 3-49640 1787 1-15037 8 31 10-47750 3-02 41 9-5
33 9-05578 7782 17 3-49691 5673 1-20530 9 32 10-47939 2-88 42 48
34 3-16673 2623 18 349735 6123 1-26309 0 33 10-4822 1

35 1-10751 9173 19 3-49773 3630 1-32400 34 10-4859 55

36 3-87380 7057 19 3-49805 7227 1-38833 36 10-4886 1-3

37 1-35507 9877 20 3-49833 4625 1-45616 36 10-4901 22 48 34
38 4-74052 2854 20 3-49857 2417 1-52752 37 10-4916 7-5

39 1-65850 6250 21 3-49877 6257 1-60262 38 10-4933 2-4

TABLE 2. AITKEN’S AUXILIARY SEQUENCES
¢ Z,(1) —Z(t) ZP(1) Zy(t) —Z{P(1) ZP(t)

20 3:47690 1723 3-49940 3-49896 10-67828 10-167 10-114
21 3-48027 7325 3-49832 3-50060 10-28506 10-257 10-447
22 348314 6464 3-49991 3-50015 10-19442 10-501 10-372
23 348555 9304 3-50039 3-49978 10-39326 10-432 10-405
24 348762 4858 349989 3-49986 10-46311 10-400 10-05
25 348940 2708 3-49980 3:50004 10-40623 - 10-406 11-06
26 349092 2930 3:49997 3-50000 10-40029 10-47 10-46
27 3-49222 0890 3-50002 3:49998 10-44285 10-46 10-46
28 3-49333 2719 3:49998 3:49998 10-46103 10-46 10-46
29 3:49428 6110 3-49998 3:50000 10-45659 10-45 10-48

From these tables it is seen that ten-figure accuracy in the primary sequence {f(¢)}
produces only the zeros x, and x,. Even allowing for the fact that the zeros of smallest modulus
can be obtained from the reciprocal polynomial, it is clear that something of the order of
thirty significant figures would be needed in f;(#) in order to solve f{(x) completely. The
same example has been solved by the methods recommended in §§ 2 to 5, keeping a maximum
of ten significant figures in the work. Seven root-squaring transformations produced all
the moduli of the zeros correct to five or more figures, and the phases were then obtained
without difficulty to the same accuracy. Other examples tried both ways have justified
the conclusion that in general the labour necessitated by Aitken’s method is much greater
than that required by the methods described in §§ 2 to 5.

An advantage that is frequently claimed for the Aitken-Bernoulli processes is that checking
is unnecessary because isolated errors made in the course of the work will not affect the final
results. As far as high-degree polynomials are concerned this is to some extent illusory,
since errors are not uncommon and their uncontrolled introduction every few steps may
prolong the convergence to a prohibitive extent. Some check is necessary; for example,
after every four steps the value of f; (f) can be verified by direct calculation from the values of

Si(t—4), /1(t=5), ..., fi(t—n—3).
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390 F. W. J. OLVER ON THE

In conclusion, therefore, from the standpoints of speed and certainty of success the Aitken-
Bernoulli processes are much inferior to the processes of §§ 2 to 5. Only if one or two extreme
zeros are all that is required, or perhaps if automatic computing equipment is available,
can they be considered as useful methods.

(2) Practical process of root-squaring

The root-squaring process is essentially a means of calculating the moduli of the zeros.
The principles on which it is founded are well known and have the following basis. If
Qyy Aoy -, &, are the zeros of the polynomial

Jx) = ap+a x+a,x2+ ... 4a,x", (2-1)
then a polynomial whose zeros are —a2, —a, ..., —a2, is given by

g(x) = bo+ b x+byx2+...+b,x", (2-2)
where . b, =a%2—2a,_ja, 1+2a, 4a,.5—... (§=0,1,2,...,n). (2-3)

The application of this transformation 7 times in succession yields a polynomial whose zeros
are —of, —abl, ..., —aM, where M = 2m. For sufficiently large m, the transformed poly-
nomial breaks up and the moduli of the zeros can be computed from the ratios of the
arithmetical Mth roots of adjacent coeflicients (see, for example, Whittaker & Robinson,
1944, §§ 54 to 58).

One of the major computational difficulties of the process is the checking of each trans-
formation; undetected mistakes can make the subsequent computations useless. As the
transformations proceed the coeflicients involved become very large or very small numbers,
so that algebraical checks based on the relation

_ J&) f(—2) = g(—x?) (2+4)
have no practical value.

The only suitable kind of check seems to be the numerical one of duplication. It is well
known that ordinary duplication of complicated calculations is at best a poor check, even
if performed by another computer, and this is especially true in root-squaring owing to the
inconvenient magnitudes of the numbers involved. Consequently, the computational
arrangement and the methods of effecting the transformation and duplication check are
of the utmost importance if the work is to be error-free. It is therefore desirable to mention
some details of the routine used at the Mathematics Division for carrying out the trans-
formations.

The large and small numbers are conveniently handled when expressed in standard form:
N = $.10%, where p lies between 1 and 10 and ¢ is an integer. The numbers p and ¢ are
recorded in adjacent columns.

Each transformation begins with the coefficients, say 4, 4y, ..., a,, derived from the pre-
ceding transformation. The sequence of operations is as follows:

(i) Below the coefficients ag, ay, ..., a, we write, in standard form, modified coeflicients
A, = +a,, where the positive sign is taken if s or s+ 1 is a multiple of four and the negative
sign otherwise.
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(ii) The following array is formed:

Az A2 A3 43 )
24,4, 24,4, 24,4,
24,4, 24,45 ...} (2-5)
24,4,

This is most conveniently effected by working along the diagonals using a constant multi-
plier for each. It is preferable to make a separate task of the determination of the indices
and signs, and if this is carried out first the formation of negligible products (of which there
is a considerable proportion in the later transformations) can be avoided.

(iii) The columns of the array are summed, taking account of the indices and signs, to
give the coeflicients by, 4y, ..., b, of the transformed polynomial.

(iv) The numbers b, are checked directly from the set a, by

bs = (%d?*’ds~1 Qg1 T gl 9— .. ) X 2.
In accumulating each b on the calculating machine the common index to which the products
are formed is taken to be the value recorded at step (iii).

Table 3 gives a numerical example. It shows the transformation from m = 2 to m = 3
of the polynomial

1+ 8x -+ 32-8x% 4 89-6x3 -+ 190-68x* -+ 304-08x5 + 443-576x5 - 468-88x7 + 524-327x8
+378:908x%+ 345:07256x'0+ 166-44768x!! 4- 128-218748x!2+ 37-651096x'3
+25-1783048x'%+ 3-4356048x'% - 2-03253121x16, (2-6)

Two further points should be noted. First, the advantage of writing the coefficients in
two staggered rows as in the example is one of numerical convenience; only members of
the same row are then multiplied together. Secondly, the principal reason for the intro-
duction of modified coeflicients 4, is to enable the signs of the products to be checked
independently. It is in the determination of the signs and indices that errors would
otherwise be most likely to occur.

By adhering rigidly to the procedure outlined above it has been found that the occurrence
of undetected errors is virtually eliminated.

(8) Special difficulties in the root-squaring of high-degree polynomials

Common criticisms of the root-squaring process are that it is not self-checking and that
end-figure errors rapidly accumulate. The checking described in §2 shows how the first-
named defect may be remedied. The second criticism is superficial, for although it is true
that the relative errors of the coefficients are approximately doubled upon each trans-
formation producing relative errors after m transformations of the order 27 = M, the final
step of taking the arithmetical Mth roots recovers the original precision.

Real difficulties which often occur with the root-squaring of high-degree polynomials
are (a) the failure of the polynomial to break up after a reasonable number of transforma-
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tions, () the severe loss of significant figures due to cancellation. Although () is more
common and more serious it is convenient to discuss (a) first. ,
The root-squaring process may converge only slowly when some zeros are of nearly equal
modulus. A full understanding of this point necessitates a close examination of the theory
of the process. , '
~ Suppose that after m root-squaring transformations the polynomial (2-1) becomes

Sn(%) = am,o—}-am,lx—l—am,zxz—{—...—{—am,nx”. (3-1)

If the zeros of f(x), arranged in non-ascending order of modulus magnitude, are a,, @, ..., ,,
then the zeros of f,,(x) are —a}!, —al?, ..., —aM, where M = 2™, and

Uy ps O, = 203 03" .. 0, (3-2)

the summation extending over all the products of a¥, af, ..., taken s at a time.
Write p,=| «,,,/a, |, so that p,<1, and let us first suppose that a; and «,, are two zeros
whose moduli are unequal, so that p,<1. Then from equation (3-2) we see that

Uy sy, = 0310} .. (1 +¢,), where ¢,—>0 as m—>c0. (3-3)

2 .
Hence Qi1 nes ™~ Aoy pes S M—>00. (3-4)

Thus if m is sufficiently large, further transformations retaining a limited number of signi-
ficant figures merely have the effect of squaring the coefficient of x*~*. When this state of
affairs is reached Gy 0 = O .. O, | (3:5)
to the number of accurate figures in a,, ,_,, and we shall say that the coefficient of x"~¢
has settled. A

Secondly, suppose that «, and a,,, are two zeros with equal moduli, so that p; = 1. Then
the asymptotic expression for a,, ,_/a,, , comprises at least two terms of the right-hand side
of equation (3-2), and the characteristic feature of the coefficient of x*~* ultimately squaring
itself upon each transformation disappears. We shall say, when p, = 1, that the coeflicient
of =5 has settled when a,, ,_/a,, ,equals its asymptotic expression to the number of accurate
significant figures in 4,, , .. For example, if a, a ,, are equal zeros and p,_y, p,,, <1, then

(3+6)

1,2
am+1, n—s ™ Zam, n—s’

and settling occurs when these two quantities are equal, to the number of accurate significant
figures they possess. Again, if a,, a,,, are complex conjugates 7 ¢*¥ and p,_,, p,,; <1, then

a ~ % cos 2M0 sec? M0 a2, (3-7)

m+1,n—s ,n—s*

What is the smallest value of m for which the coefficients have settled? Clearly if p, <1,
then with rare exceptions a,, ,_, has settled when |¢,, | <§ 1075, where S is the number of
accurate significant figures in a,, ,_,. Now from equation (3-2) it is seen that |¢,, | <kp,
where £>1 is independent of m. Hence when p, <1, settling occurs as a rule when

M>S[logy, (p77) ~ (3-8)
(since for practical purposes log,, (2k) can be assumed to be negligible compared with ).

VoL. 244. A. ' 51
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When p,=1 and |a|=|a.,|=]|0us|=...=]0,,|, where v=1, then either
s+v=nanda, , issettled forallm, or p ,,<1. In the latter event similar reasoning shows
that a,, ,_, settles when M= S/log,, (p:1). (3-9)

With an a priori knowledge of the approximate ratios of the moduli of the zeros, the least
value of m for which the coefficients have settled can be predicted from the relations (3-8)
and (3-9). Generally, however, nosuch informationis available, and the standard procedure
is to continue until most of the coeflicients are squaring upon each further transformation.
Adjacent pairs of such coeflicients correspond to real zeros, and pairs which are separated
by a single oscillatory coefficient correspond to pairs of complex zeros. Usually, of course,
not all the coefficients begin settling for the same value of m, and if there exists a set of zeros
with nearly equal moduli, then the corresponding group of coefficients takes longer to
settle and breaks away from the main body. In an effort to separate the moduli such groups
may be further root-squared independently; their extreme coefficients square themselves
with subsequent transformations. This method may work if the moduli involved are
actually unequal and if during the process all the remaining significant figures in the
coeflicients are not lost by cancellation. The following alternative approach is recom-
mended and believed to be simpler and more general, and it applies also to the case of equal
moduli.

Suppose that after several transformations it is found that a,,,, ,_,+a% ,_ to the number
of significant figures (§) present in @, ,_.. Then either p, = 1 or alternatively, if p, <1,
then a,, ,_; has not settled. In the latter event we deduce from (3-8) that Mlog,, (o;!) <S
and hence 1—p, < M-1Slog, 10. (3-10)
By taking .S = 1 we arrive at the following practical rule: ;

If @y s+ a2, even as far as the leading figures are concerned, then |o |, |og, | are equal
to within about 28-™ %,.

For example, after eight transformations a group of consecutive non-squaring coefficients
indicates the presence of zeros whose moduli are equal to within 1 %,. The average modulus
of such a group of zeros can be deduced approximately from the squaring coefficients
bordering the group, and from a knowledge of this quantity to two or three significant
figures it is generally possible to determine approximately the associated phases (see § 5 (¢))
and then complete the numerical evaluation of these zeros by the iterative methods described
in part B.

We turn now to the second dlfﬁculty mentioned at the beginning of this section, namely,
the severe loss of significant figures due to cancellation. When polynomials of degrees
exceeding ten are being root-squared it is not uncommon to lose two or three figures ‘ off
the front’ in each of the early transformations; by the time three or four transformations
have been completed several coefficients may have disappeared entirely and the work
must be repeated using more figures.

In order to understand this phenomenon, con31der the application of the root-squaring
transformation to the polynomial*

fi5) = 3 (=) (n]5) @, (3:11)

* For typographical reasons (n]s) is used to denote the binomial coefficient (?) .
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If the coefficients of the transformed polynomial g(x) are denoted by b, then from equation
(2-3) we obtain
b, = a*>[(n|s)2—2(n|s—1) (n|s+1)+2(n|s—2) (n|s+2)—...]. (3-12)

Now since the zeros of g(x) are all equal to —a?, the sum of the terms in the squared bracket
in equation (3-12) must equal (n|s). If z—1>s>1, some individual terms are consider-
ably greater than (n]s), showing that if the process were performed numerically partial
cancellation would take place; in fact, since (n | 5)2> (n|s—7) (n| s+7) if 7>0, the number
of leading figures which cancel is approximately equal to the number of digits in (2| s)
itself. Further transformations produce the same effect.

Returning to the general polynomial of the nth degree, there is no reason to suppose that
systematic cancellation will occur when the zeros are widely separated, and the inference
is that it takes place only when some zeros are either equal or close together in the complex
plane. This is verified in practice. Even with a few moderately close zeros some cancellation
usually occurs during the early transformations. The discussion above indicates the
maximum amount of cancellation that can happen in the worst cases. For example, not more
than three figures should be lost per transformation if #<12; the corresponding limits for
four and five figures being n<<15, 19 respectively. Unless some of the zeros are actually
equal these maximum values will be attained, if at all, only in the early transformations,
because the zeros of each transformed polynomial are more widely separated than those
of its predecessors; eventually there is no further cancellation.

In practice it is important to be able to decide in advance how many significant figures
need be retained in the root-squaring computations in order to produce desired accuracy
in the final results. With no a priori knowledge of the approximate distribution of the zeros
the suggested policy is to perform one or two transformations retaining as many figures
(usually ten) as can be set conveniently on the calculating machine and to note the cancel-
lation that occurs. If this is severe, it may be assumed that several zeros are close together,
and similar cancellations may be expected during the next few transformations. It may
then be necessary to repeat the first one or two transformations retaining double the number
of figures that can be set directly on the machine. This does not involve any major change
in technique in the computations, and the extra labour can be tolerated for a few ‘trans- '
formations.

It will be noticed that the slow convergence to a settled state and loss of significant figures
owing to cancellation have similar basic causes: the former occurs when several zeros have
moduli which are close together, and the latter occurs when, in addition, several zeros are
close together in the complex plane. There is more than academic interest in the above
discussion of these two main difficulties; they are by no means confined to pathological

cases.
As an example* the following polynomials f(x) of degree 2n arise in cable unit theory:

S(%) = AP(x) + Q(x),
where P(x) = x(ax®+1)""'sinhny cosechy, Q(x) = (ax?+-1)"cosh ny,}
y being given by coshy = (ax2+1)" {(a+ %) x2+41}.

~ * The author is indebted to the British Thomson-Houston Co. for permission to publish this example.
51-2

(3-13)
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Values of the parameters of physical interest include 7 = 6,8,10,12; ¢ =0 to 1; 4 = 0-8
to 1-5. Several of these polynomials have been solved, and with practically all of them the
cancellation in the root-squaring process is severe. The polynomial (2:6) comes from the
particular case n = 8, « = 0-1, 1 = 1 of this example, and from table 3 it is seen that there
is a loss of two significant figures in many of the coefficients in the third transformation. In
all, seven transformations were required to separate the zeros to four-figure accuracy, and
by that stage nine figures had been lost in about half the coefficients. The zeros of this
polynomial to five decimal places are

—0-29351+0-14350i, —0-22447-+0-450931, -0-14762i0'77176i,]
—0-09004+1-061191, —0-05086--1-29691i, —0-02567-+1-47438i, (3-14)
—0-01049+1-59630i, —0-00249-+1-667124i, [

and would not, on general grounds, be considered to be particularly close together. If, in

fact, the zeros of a given polynomial are much closer than these, their accurate evaluation

becomes a really acute computational problem. For example, in the case n = 8, « = 10,
= 1 the zeros of f(x) have been calculated to four decimal places as follows:

—0-1324+0-1360i, —0-0187-+0-2530i, — 0-0023--0-2926i,)
—0-0005-40-3042i, —0-0001+0-3086i, —0-0000-0-3107i, (3-15)
—0-0000-40-3117i, —0-0000--0-3122i.

Here the root-squaring process fails to determine all the moduli even if twenty figures are
retained in the initial transformations. To solve such a difficult polynomial satisfactorily
it must first be transformed into a more convenient form, by methods discussed later in § 9.
It may be remarked that although the polynomials (3-13) are ill-conditioned in the sense
that arbitrary small changes in the coefficients produce large changes in some of the zeros,
the zeros are not unduly sensitive to arbitrary small changes in the parameters « and A.
This example illustrates how the zeros of even very ill-conditioned polynomials can be
meaningful physically and demonstrates the importance of studying the solution of such
polynomials, quite apart from any intrinsic interest attached to the problem.

(4) Methods available for evaluating the phases

Provided an adequate number of significant figures has been retained in the calculations,
the root-squaring process furnishes approximations to the moduli of the zeros, including,
as demonstrated above, the multiple moduli. The accuracy of the results depends on the
extent of the cancellation that has taken place and cannot usually be predicted. The
problem discussed here is the determination of the phases or, equivalently, real parts of
the zeros using the approximate values of the moduli.

In the case of a modulus which has been ‘isolated’ by the root-squaring process (that is,
one obtained from consecutive squaring coefficients), the corresponding zero is necessarily
real, and the phase determination merely amounts to ascertaining the correct sign; this is
most speedily effected by trial.

Multiple moduli (including of course the moduli corresponding to conjugate pairs of
complex zeros) present a more profound problem unless their total number does not exceed
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four, that is, at least all but four of the zeros are real and simple and have been isolated by
the root-squaring process. In the latter event the phases can be determined by elementary
methods, using the known sums of the zeros and of their reciprocals.* Three methods have
been proposed for solving the general problem. We shall consider first their application to
isolated conjugate pairs of complex zeros; the case of three or more unseparated moduli is
deferred until §5 (¢).

I. Methods based directly on the root-squaring computations
Using the notation of § 3, suppose that in the final transformed polynomial f,,(x) the
triad of terms corresponding to a pair of zeros r e+ of f(x) is

. am,sxs+am,s+1xs+l.+am,s+2xs+2
Then from equations (3-2) and (3-5), it follows that
M = am,s/am,s+2 and  2rMcos Ml = am,s+1/am,s+23 (41)

whence r and cos M0 can be evaluated. Knowing the latter, we can obtain cosf as one of
M possible values. The ambiguity could be resolved by substitution in f{x) but the work
involved is excessive. The following two variations of this method, due to Graeffe (1837)
and Carvallo (see, for example, Ostrowski 1940, p. 243) respectively, greatly reduce this
labour. '

(1) Knowing cos Ml = %am,s+1/(am,sam,s+2)% =0 (say), (42)

we can obtain cos MO = +-{}(c+ 1)} (4-3)

The determination of the correct sign can be effected by trial, since — ¥ e¥Mi0 i5 3 zero of
Ju—1(x). Similarly, by testing in f,,_,(x) the value of cos M0 can be determined, and by
repeating the process m times the value of cosf is obtained. The number of possible
ambiguities to be tested is thus reduced by this technique from 27 to m.

(i) Write b (x)=a, g—a, yx+a, x2—... = AS,O—i—AS’zx?l-ASAxZ—I—...,l

4-4
V(%)= —a, 1 +a, 3x—a, sx2+... = ASQI—I—AS’3x—I—AS,5x2—|— ,J (4-4)

where 4’s denote the modified coefficients of § 2. Then
Jn-1(%) = @01 (—2%) — 2,1 (—47). (4:5)
Define %, = rel’ and x,,, = —42 if s>>0, so that x, is a zero of f;(x). Substituting x = x,,_,

in (4-5), btai
1 ( ) we optain X, = ¢m—1(_‘x%1~1) — ¢m—l(xm) . (4’6)
" gﬁm—l(—xrzn—l) "ﬁm—l(xm)

Since x,, is known, this formula gives x,,_;. Similarly, we can obtain x,_,, %, _s,... and
finally x,.

In practice it is best to combine the two techniques, for although (ii) is speedier, (i) is
the more accurate; there is a steady gain in accuracy on taking successive square roots,
whereas in (ii) there is gradual accumulation of rounding errors. The suggested combined
method is as follows:

* See, for example, Whittaker & Robinson (1944, §57). These authors remark that ‘a similar method

.. .may be applied to solve equations with more than two pairs of complex roots’, but the extension is by
no means trivial.
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(iii) Starting with x,, = —rMeM9, computed from (4-1), we form the successive powers
x2,x3, ..., from which, using (4-4), ¢,,_,(x,,) and ¢,,_,(x,,) can be computed. Then x,,_,
is obtained from (4-6), and this value is compared with that obtained from

oy = rMelfn-1 where 0,_, =30, 4%, (4-7)

-8, being the known phase of x,,. The correct sign in equation (4-7) is determined by this
comparison. Indeed, equation (4-6) is best regarded merely as a means of resolving the
ambiguity in (4-7), and it is usually sufficient to perform the calculations associated with it
to three- or four-figure accuracy.

X

I1. Methods depending on a change of origin of the root-squaring process

The principle of these methods has been described by Graeffe (1837) and Ostrowski
(1940). The polynomials f(x) and f(x+-a), where a is a suitably chosen real number, are
each root-squared; the zeros of f(x) are then located at the intersections of circles centred
at x = 0 and x = a with radii equal to the moduli. A practical drawback of this unrefined
technique results from the presence of more than one pair of complex zeros; additional work
is required to decide which intersections really do correspond to zeros. If there are v pairs
of complex zeros then there are correspondingly v circles centred at ¥ = 0, an equal number
at x = a, and these may intersect at as many as »2 pairs of points. Graeffe pointed out,
however, that no ambiguity will arise if a is chosen to be numerically less than half the least
difference between the distinct moduli. The labour of this process, apparently the most
economical of this kind, is equal to that already expended in the root-squaring of f(x).

Another remedy for the defect was suggested by Brodetsky & Smeal (1924). They showed
that the ambiguity could also be removed by making an énfinitesimal change of origin ¢,
retaining ¢ as a symbol in the calculations and ignoring O(¢?). The additional labour
entailed is double that expended in the root-squaring of f(x) and the method is inferior to

that of Graeffe.

I11. Highest common factor method _
This also is due in principle to Graeffe (1837). It is supposed* that f(x) is of even
degree 2n. Let x2—grx 412 be the quadratic factor corresponding to the known modulus .

Formal division of f(x) by this factor, retaining ¢ as a symbol, gives

Sx) = (2 —gre+17) Q(x) +xJ(q) +K(q), (4:8)
where J(q), K(g) are polynomials in ¢ of degrees 2n—1, 2n—2 respectively, whose coeffi-
cients depend on the coefficients of f(x) and on 7. Clearly the required value of ¢ must

be such that J(q) = K(q) = 0. (4-9)

Moreover, since we have supposed there is only one pair of complex zeros of modulus 7,
there can be only onet real value of ¢ satisfying (4-9) and such that —2<¢<2. Thus ¢
may be obtained from the highest common factor of J(¢) and K(q).

It is possible to perform quite formally about half the steps of the usual process for finding
the common factor and by these means the following theorem may be established:

* Polynomials of odd degree can be included by multiplying them by x or by dividing them by a linear

factor beforehand.
t Even if f(x) has only two zeros of modulus 7, it is possible for J(¢) and K(g) to possess more than one

common zero. They can, however, have only one common zero in the range —2<gq<2. See also §5(a).
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If s —gqre+-r2is a quad}atic Jfactor of the polynomial
Sflx) = ag+ayx+ax%+ ...+ a,,x7", (4-10)

then q is a common zero of the polynomials

n ' n—1
Un(Q) =s§0un,sqs’ Un—l(Q) :sgoun—l,sqsa (4.11)
s+1 | s+2 s+3. ‘
Where un,s:ﬂs—“( 1 )ﬂs+2+( 2 )ﬂs+4_( 3 )ﬂs+6+“°: )
) 0 5 (412)
s (s $-+
un—l,s:7,s~( 1 )7s+2+( 2 )73+4~( 3 )7s+6+"'a
and ' ﬂs = an+srn+s_an—s—2rn_s—23 Vs = an+s+lrn+8+l”an—s—lrn—s—l' | (4.13)

The following points should be noted: :

(i) Itissupposed in (4-13) that values of a, are to be replaced by zeros whenever s<0
or s>2n. Thus - ﬂn—l = dZn__sz"—l, ﬂn = azann’ Vn = 0.

(ii) Itisnot possible to continue formally the process for determining the common factor
beyond U,_,(¢) and still obtain convenient expressions for the coefficients of the resulting
polynomials.

(iii) The theorem has not previously appeared in the above form, but it can be deduced
from the work of Graeffe and Encke, an account of which is given by Bairstow (1914). In
the case we are considering here, a short proof is obtained by making the substitution
g = 2cos f in the imaginary parts of each of the two relations

2n . 2n .
Sgoas s ed M0 = , Sgoasrs ec—nthif — 0, (4-14)

In the practical application of this result the coefficients U, s U,y ; are computed from
equations (4-12) and (4-13) and checked by the formulae

n ‘ A
2 (ﬁs*—ys) = anr"—l—an_lr”‘l,
§s=0 , .
and sgou"’s = Bo+B1—PBs—Ps+PBs+Br1—Fo—Pio+--- (4:15)

1

sgou"_l’s =Yo+V1— Vs~ Vst V6T V1Yo~ V10T ...

3
|

The common factor is then extracted numerically. One of the quickest routines* for doing
this is to form the succession of polynomials

U.(9) :sgouk,sgs (k=n—2,n-3, ..., 0),

related by o Ui(q) = Uyio(9) + (e g+ 25) Upia(9), - (4-16)
where My = —uk+2,k+2/uk+l,k+l: A =— (uk+2,k+1 +iukuk+l,k)/uk+l,k+l‘ (4-17)
Thus Ug, s = Uprg s+ pllgyy, o1+ Aty 5 (4-18)

* This is equivalent to the school text-book process but saves a certain amount of recording.


http://rsta.royalsocietypublishing.org/

A A

j A Y

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

' \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

400 F. W. J. OLVER ON THE

As checks at each stage we may verify that u; ., and u; ,,, (as given by (4-18)) both vanish,
k k+2 k+1 :

and that Sg()uk,s zsgouk+2,s+ (. +A) goukﬂ,y (4:19)

Assuming U,(q), U,_,(¢) have only one* common zero, the value of ¢ is given by
g = —uy, o/t - (4-20)

The identity u, , = 0 provides another check.

An example of the computational arrangement of this method is given in § 5 ().

It may be mentioned here that the common factor theorem given above remains valid.
whatever the nature of the zeros of x2—grx+12. They could be real (4=>2 or ¢<< —2), or
non-conjugate (g or r or both complex).

(5) Comparison of methods for evaluating the phases
(a) Accuracy

Methods I and IT generally produce as many correct decimals in cos or g as there are
significant figures available in 7. The accuracy of method III, if used without refinement,
cannot exceed this and may be much less owing to loss by cancellation of significant figures
in the coeflicients of the polynomials U, (¢). Occasionally a devastating loss of figures occurs
in all the coefficients of one polynomial of this sequence, a phenomenon which can be quite
simply explained.

Suppose, for example, f(x) has a pair of real zeros #;, x, such that their geometric mean
equals . Then in addition to the factor x> — grx+r2? we are seeking, f(x) has another factor
of the same form with ¢ replaced by ¢; where ¢, is also a real number but | ¢, | >2. Thus
U, (g) and U,_,(¢) have two common zeros and U, (¢) vanishes identically. More commonly,

f(x) may have a pair of real zeros with a geometric mean approximately equal to r, and the
disappearance of U,(¢) will be incomplete, partial cancellation taking place on forming its
coefficients. Similarly, if f(x) has two pairs of zeros r, e*1/1, r, e*12 which approximately
satisfy 0, = 0, and r;7, = 72, then a loss of significant figures will occur on forming the
coeflicients of U,(q).

Fortunately, this drawback to method III is not serious, and it is possible to regain the
lost accuracy fairly simply. The way this is done depends on the extent of the cancellation
that has taken place. A

(i) Suppose that three or four decimals are available in the value of ¢ obtained from the
common factor process. The corresponding phase ¢ is then obtained from

0 = cos7! (¢). | (5-1)
Now, using (4:2), we can compute cos Mf=c¢ from the root-squaring calculations, and
we then have 8 — (~t-cos~! o+ 2vm) | M, (5-2)

where v has one of the values 0, 1,2, ..., M. The substitution in this equation of the value
of § obtained from (5-2) usually determines the correct value of v and the correct sign. Itis
then possible to obtain ¢ = 2 cos 6 correct to as many decimals as there are figures available
in 7. ‘

* The case of several common zeros is considered in §§5 (a) and (c).
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(ii) If the available value of ¢ is insufficiently accurate to resolve the ambiguities in
equation (5-2), then we can revert to the last polynomial of the sequence {U,(¢)} in which
no considerable cancellation has occurred, and obtain a better value of ¢ by iteration
(see §7), since ¢ must be a zero of this polynomial. Using the more accurate value we can
then proceed as in (i).

(iii) Finally, the cancellation in one of the polynomials, say U,_;(¢), may be so severe
that the common factor process cannot be continued. This apparent failure may in fact
be turned to considerable advantage, for if the polynomial U,(g) (which is of degree less
than half that of f{x)) is solved numerically, each real or complex zero ¢ will correspond to
an approximate quadratic factor x2—grx+72 of f(x), and we can quickly obtain* 2k zeros
of f(x). ‘

Summarizing, if we regard methods I, IT and ITI merely as means of resolving the
ambiguities in the formula (5-2), then they are of equivalent accuracy. As a corollary, it is
often possible to apply them keeping comparatively few figures in the calculations and yet
still obtain as many decimals in ¢ at the finish as there are significant figures in r.

(b) Speed _

The labour entailed by method II is independent of the number of zeros that happen to
be real. With methods I and III, however, the labour involved is proportionate to the
number of complex zeros. It is true that method IT automatically determines the signs of
the real zeros, but this is a relatively small gain since these signs can be quickly resolved by
trial. Even in the case most favourable to IT when all the zeros are complex, it has been
found to be quicker in practice to employ methods I and III, partly because with these
methods fewer significant figures need be retained in the bulk of the calculations.

- Comparing methods I and III, we note that with the former the evaluation of each value
of g requires a time which is roughly proportional to the product of the degree of f(x) and
the number of root-squaring transformations required for separation, whereas with III
the time varies roughly as the square of the degree of f(x). In practice the former time is
generally slightly less than the latter. There is, however, a further consideration completely
outweighing this—an advantage of method III not shared by I.

After each quadratic factor 2 —grx+ 72 has been evaluated, and, if necessary, iterated
in f(x) (see §7), it may be divided out of the polynomial. A succession of polynomial
quotients is thereby formed, each of degree two less than its immediate predecessor and
each of which may be used in place of /() in the common factor process. The labour required
for the evaluation of each ¢ thus decreases rapidly as the quadratic factors are successively
removed. In addition, a further saving of labour may be made by removing beforehand
the linear factors corresponding to the real zeros.

One point only of the procedure just described needs special care. Although the poly-
nomial quotients obtained by successive removal of the accurate quadratic factors are
sufficiently accurate for use in conjunction with the root-squaring computations for deter-
mining ¢, they must not be used for iterating the quadratic factors (using the methods of § 7)
if greater accuracy is required. The original polynomial f(x) should always be used for any

* This phenomenon actually occurred in the solution of a sixteenth degree polynomial and it was possible
to obtain #hree pairs of complex zeros with one particular application of the process.

Vor. 244. A. ‘ 52
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necessary iteration of the linear or quadratic factors, otherwise the accumulation of rounding
errors may prove very troublesome.

(¢) Multiple or nearly equal moduli

Discussion has, so far, been restricted to the evaluation of phases of isolated conjugate
pairs of zeros. If there are three or more zeros whose moduli remain unseparated after
a reasonable number of root-squaring transformations, an approximation to the average
modulus is available (cf. § 3), and we now consider how the associated phases may be found.

Method III can be applied to such problems with little modification of the computational
procedure. If the number of zeros involved exceeds three, then the polynomials U,(q),
U,_,(¢) have at least two common zeros in the range —2<¢<2, and the common factor
process terminates at Uy(q) (k=>2), the zeros of which correspond to quadratic factors
of f(x).

Method II is also applicable with little modification, but method I would require sub-
stantial alterations in procedure.

(d) Conclusion and example

From the general standpoint of accuracy, speed and simplicity, method III (with the
modifications given in (a) and (b)) is the most efficient of the available methods for the
evaluation of the phases of the complex zeros.

TABLE 4. PHASE DETERMINATION (72=1-6845)

ag agr, —f— | — a Us,s Us,s Us,s U, s Uy, s

52-72957 52-72957 +20-220 —4-053 — 0024 + 0-124 — 0-023 +0-125 —0-003

4-95768 6-4346 +3-2551 —171-255 — 1-2597 + 1-475 — 1-1886 +1-599 0-000v
95-33607 160-594 + 36-609 —4-1772 —12-486 — 41772 —11-866 0-000v 0-000v

6-28617 13-743 +2-2574 —36-365 + 2-2574 —36-365 0-000v 0-000v
63-72316 180-814 +16-365 +16-365 0-000v
13123333 83:2237 B(B,—7,) =+ 194557y L=+ 4853y  —38:943y —13078v  +1.724y

0-36389 2-2574 p=+ 045002 — 3-0646 +7-421

2-03253 16-365 A=+ 0-010383 — 0-04505 +0-163

Hence ¢ =—0-0782, cos™! (3¢) = 92-24 degrees.
. . 640 = —0-806, 0= 92-245 d
From root-squaring computations {q =02° scos 6 = —0-07835, p=gqr=—0-101 Gg?grees,

An exdmple of the arrangement of the computations using method III is given in table 4.
The polynomial is that given by (2:6), and we are here calculating the value of ¢ corre-
sponding to 72 = 1-6845. The factors

x2—|—0°58701x—l—0°10674, x2+0°44894x+0'25372,
x24+0:29525x+0-61740 and x24-0-18008x-+1:13424

have been checked by iteration in f(x), and then divided out successively to leave the
quotient ag+ajx+asx?+...+agx8, the coefficients of which are used in (4:13) (taking
n = 4) in place of those of f(x), in accordance with the procedure suggested in (5) above.
The accuracy of the value obtained for ¢ has been improved by the device described in
(a) (i) above.
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ParT B. INDIRECT METHODS
(6) The use of indirect methods

We turn now to a discussion of iterative methods. Given some approximation to a zero,
an iterative process if successful must produce a better approximation. Except in special
cases (such as the well-known procedure for evaluating a square root), convergence is not
guaranteed. Both the possibility and the speed of convergence depend in general upon the
accuracy of the first approximation.

Iterative methods are therefore most useful when a fair approximation is already known.
In rare cases this can be obtained from physical or intuitive reasoning. More commonly,
a direct method has first been applied and has produced a first approximation, the accuracy
of which may be unknown, or known to fall short of specified requirements. Iteration can
then be used to improve the accuracy, and we shall regard such methods as supplementary,
rather than as alternative, to the direct methods discussed in part A.

In this approach we differ from other authors, notably Jelinek (1865, see also Bairstow 1914,
p. 63), Frazer & Duncan (1929) and Shih-Nge Lin (1943), who have suggested the use of
certain iterative processes using arbitrary initial approximations, dispensing entirely with
direct methods. In practice it is found that for polynomials of high degree such methods
do not always converge, and even when successful they usually entail much more labour
than root-squaring followed (if necessary) by iteration.*

A measure of the power of an iterative process can be taken as the degree of convergence,
defined by Bodewig (19466, 1949) and Hartreet (1949). If o is a simple or multiple zero
of f(x), a is an approximation to « and 7=« —a, then an iteration formula of the form

1="Fa)+0(n[) (*=1)

is said to be convergent to the kth degree.

If £>1, the characteristic feature of such a formula is that once the approximation a is
sufficiently accurate, each subsequent application increases the number of correct figures
in the ratio £ to 1. Among formulae of equal degrees of convergence, variations in power
occur only through differing values of the constant implied in the error term O(|7 |¥), and
in practice such variations are usually unimportant; the most useful formula of given degree
will generally be that with the simplest form of F(a).

Formulae for which k£ = 1 are termed linearly convergent and are best avoided; con-
vergence is either very slow or non-existent.

The root-squaring process, although it is not an iterative process, is convergent to the
second degree in the sense that the number of accurate figures in the estimates for the
moduli eventually doubles with each subsequent transformation, until it equals the
number of working figures. Bodewig (19464) has remarked that this process therefore has
greatest efficiency if it is carried out to many decimal places. This is often true, but the labour
can be very great if cancellation is severe, necessitating ‘double-length’ arithmetic on the

* A possible exception to this statement is Laguerre’s formula applied to polynormals whose zeros are
all real (see §7).

+ Hartree uses the term ‘order’ in place of ‘degree’.
52-2
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calculating machine. In such casesit is best not to exceed the machine capacity if possible,
but merely to find an approximation by root-squaring and improve it by the use of iterative
formulae of which the most common are also quadratically convergent.

It will not be necessary to consider the region of convergence of formulae of iteration.
In nearly all cases the approximations obtained by root-squaring lie well within these
regions. In the most unfavourable case of zeros of extraordinarily close proximity, special
devices (see §9) can be used for their separation, and iteration can then complete their
evaluation.

(7) Isolated simple zeros

In this section we suppose that o is a simple zero (real or complex) of f(x) and « is an
approximation to « such that =« —a is small compared with the distances from a of the
other zeros of f(x). We shall discuss various formulae of iteration, their uses and relative

merits.
(a) Quadratically convergent formulae. The principal formula of this class is due to Newton:

G 2 :
1 =—H o). (71)
(b) Cubically convergent formulae. One of the simplest of such formulae is
£&) _@PF@) o101, (12)

U@ 2@
Another formula is that of Laguerre:

N () 3
= f’(a):t{H(a)}ﬁ—O(l”l )> (7-3)

where 7 is the degree of f(x) and
H(a) = (n—1)*{f"(a)}* —n(n—1) fla) f"(a).

The interesting feature of this formula is that if /(x) is a polynomial whose zeros are all real
and distinct, then starting from an arbitrary real value a the successive application of (7-3)
produces two sequences which converge to the nearest zero greater than a and to the nearest
zero less than a. Laguerre’s formula and its extensions to multiple real zeros have been fully
discussed in papers by Bodewig (19464) and van der Corput (1946).

(¢) Formulae of higher degrees of convergence. Examples of these may be constructed by
reverting the Taylor expansion

F@) 1@+ 12" (@) o ) = 0. (7:4)

Relative merits of the use of formulae (a), (b) and (c)

Formulae (7-1) and (7-2) are very powerful and there is little difference in the labour
they involve. Suppose, starting from d correct significant figures in the zero, it is desired to
determine Nd correct figures. Then the approximate numbers of steps required using
formulae (7-1) and (7-2) are log, N and log;, N, respectively. Thus the approximate numbers
of polynomials to be computed using the two methods are 2log, N and 3log; N, and these

quantities have the ratio
2log. 3

3log. 2

= 1-06....
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Formula (7-1) is to be preferred, on the grounds of simplicity and the ease with which
errors ate detected and corrected. In this respect it is superior also to the formulae of
class (¢), notwithstanding their higher rate of convergence.

The practical application of quadratically convergent iteration formulae to isolated simple real zeros
When a and 7 are real, the best procedure is the straightforward application of (7-1).
The polynomials f(a) and f’(a) are most conveniently computed on a transfer calculating
machine using a method well known to computers, consisting of repeating cyclically the
operations of multiplication, addition and transference as indicated by the sequence

9n = Gy qszaq;+1+as (s:n-—l’ n—2, ..., O):

g, 4y, ..., a, being the coefficients of f(x). Then f(a) = ¢,. The quantities g¢,, g,_, .-, ¢; are
the coeflicients of the polynomial quotient which results on dividing f(x) by x—a; they
appear incidentally on the machine but need not be recorded unless required in another
connexion. :

One point deserves special mention. It has been frequently stated (see, for example,
Whittaker & Robinson 1944, §48) that after one or two applications of (7-1) it becomes
unnecessary to recompute f’(a) since this quantity suffers relatively small changes in the
subsequent steps. This practice throws away the advantage of the quadratic nature of the
convergence; instead of doubling the number of correct figures with each subsequent step,
only a fixed number (equal to the number of leading figures of f'(a) and f’(«) that agree)
can be added. To secure the maximum advantage, f’(a) must be recomputed at each step,
the only exception being in the /ast step when the full gain associated with the formula may
not be required.

The practical application of quadratically convergent iteration formulae to isolated complex zeros

The direct application of (7-1) involves the evaluation of polynomials for complex values
of the variable a. The least laborious way of effecting this numerically is to divide the
polynomials by the real quadratic factor corresponding to @ and its conjugate @. We shall
denote this factor by x2— px—I, so that

p=2%a, l=—|al’ (7-5)
Let the results of dividing f(x) and f”(x) by this factor be written* in the forms

Jx) = (62 —px—1) q(x) + 12+ 405)

f(x) = (x2—px—1) r(x) +rx+ r.) (7-6)
Then if a=b+1ic, n=0b+idc, we obtain from (7-1) and (7-6) a correction
8b-+idc = ~-——z:§§iig i;’:
Hence, using (7-5), we obtain _
A0b = g, 1 1—b(gor,+q170) — o705\
450 = (gyr—qurh) ¢ (77)

where A =12+ pryr,—r}.

* The primes on ¢, 7y are introduced here for convenience in a later context. See (7-11) and (7:12).
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Complex numbers can be avoided completely if, instead of the pairs of complex zeros,
we seek the corresponding quadratic factors, and this is to be preferred. The zeros can, of
course, be immediately derived from the factors, but in many problems the quadratics
themselves are of predominant interest.

Let dp, 0l denote the changes in p and [ corresponding to the changes 85, dc. Then neg-
lecting O(] 7 |?%), we find that

0p = 20b, Ol = —2b0b— 2cde,
and therefore Adp = (2lr,—pry) g, — (pr1+275) o5 }
A8l = — (pri+2r0) lgy 4 (2Ur,+pr1 +p7) 4o

A being given by equation (7-7). For complex zeros this is the most readily computable
form of Newton’s rule. :

A simpler formula was given by Bairstow (1914). Let the results of dividing f{x) twice in
succession by x2—px —{ be denoted by

) = (@ =px—=1) g(x) + 12+ (90—101), (7-9)
q(x) = (¥ —px—=1) T(x) + Tyx+ (T, —p T)). (7-10)
Then Bairstow’s formula (in a form slightly modified from the original) is given by
Dép = T1g0— T gy, Dl — Mg, — To%al
where M=I1T,+pT,,  D=T2—MT,. )
Simple checks on the computation of (7°11) are given by
T+ Tydp — — g1, Tydl+Mbp — —q,.

It is easily verified that (7-11) is equivalent to (7-8) with O(|# |?) neglected, so that
Bairstow’s formula is quadratically convergent. Bairstow’s own method of proof shows that
this is still true even if the zeros of x2— px — [ are not complex conjugates, provided they are
distinct. Comparing (7-8) with (7-11), we see that slightly less labour is entailed in the
application of the latter, the formula is simpler, there is no necessity to form the coeflicients
of f'(x), and the degree of ¢(x) is one less than that of /*(x). On these grounds formula (7-11)
has the advantage.

In the application of (7-11) it is important that 73, T}, M and D are recomputed at each
step (except possibly the last), just as f’(a) must be recomputed when applying Newton’s
rule to real zeros.

Bairstow’s formula does not seem to have acquired quite the popularity it deserves. In
our experience it is the best, for complex zeros, of all known quadratically convergent

formulae.

(7-8)

(7-11)

The division of polynomials by real quadratic factors

The successful application of Bairstow’s formula to high-degree polynomials requires
a knowledge of the building-up errors that are incurred in the division of polynomials by
quadratic factors. We now consider this question.

Let us write the quotient ¢(x) of equation (7-9) in the form

q(x%) =g, X" 2+ g1 X734+
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The process of division amounts to the application of the recursion formula given by

9n = Cpy  Gny zpqn+an—l 1
(7-12)
and €= +lyir ke, (s=n—2n=3, .., 0)]
It will be noted that the remainder is not ¢, x+ ¢,, but ¢, 2+ ¢;, where
90 = 90— P- (7-13)

For the purpose of iteration, the quantities p, [ and the coeflicients ¢, must be regarded
as exact. Errors are introduced through the rounding-off of successive ¢’s calculated from
equations (7-12). Suppose that the computed value of ¢, is rounded-off to g,—e,. The
error ¢, thus introduced builds up according to the difference equation

Uy = Plpyyy 10, o, (7-14)
1 =0. (7-15)
The contribution of ¢ to the total error in ¢,, (m<s) is ,,. The solution of (7-14) with the
initial values (7-15) is

with the initial values U, =6, U

U, = e,r*mcosec sin (s—m—+1)40, (7-16)

where 7e*? are the zeros of #2—px—I. Hence the total error in ¢,, due to accumulation of
the rounding errors in q,,, ¢, 15 -5 Gps 1

n n—m
e, = cosecl Y e,r*"msin (s—m-+1) § = cosecl 3 ¢, r*sin (s+1) 4. (7-17)
s=m s=0
In particular, the error in ¢, is
n
¢y = cosecl Y e r'sin (s+1) 6. (7-18)
s=0

From the practical point of view the trigonometric terms in (7-17) can be ignored, and
we arrive at the following simple rule for ascertaining the number of correct decimals in
the coefficients of the quotient ¢(x):

Rounding errors in the sequence {q,} effectively build up at each step by a factor r.

If the division is performed using a transfer calculating machine, then in the calculation
of ¢, by (7-12) it is usual to employ a transferred value of ¢,,;, and this is not so severely
rounded as the recorded value. A similar examination of this process reveals that the same
rule is valid. ’

Using the rule, we can decide the correct and economical number of decimals to retain
in each ¢,. There are three cases. First, if 7 is near to unity, a fixed number of decimals can
be retained in all the g,. Secondly, if 7>1, figures must be discarded systematically: if
o=1/log,,, so that 77 = 10, one decimal must be discarded approximately every o steps.
Finally, if r<<1, decimals can be added as the division proceeds: if 7= —1/log,,7, so that
r~7 = 10, then one decimal may be added approximately every 7 steps.

Tables 5 and 6 give examples of the application of Bairstow’s process with the above rule
used in the processes of division. The polynomial is that given by equation (2-6). The
approximate factors x%2- 0-4489x+-0-2537 and x24-0-10169x+1-6845 have been obtained
from the root-squaring process, using the method recommended in § 5 for the evaluation of
the phases (cf. table 4), and in tables 5 and 6 these factors are determined more accurately.
Places where decimals are discarded or added during the divisions are indicated by an
asterisk, and they are ascertained before the numerical recurrences are carried out.


http://rsta.royalsocietypublishing.org/

a
A
A
/—%

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

V. \

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

Downloaded from rsta.royalsocietypublishing.org

A A

OF

SOCIETY

408 F. W. J. OLVER ON THE
TABLE 5. BAIRSTOW’S PROCESS
[ —0-2537 —0-25372 3
¥4 —0-4489 —0-44894 0
s S) q() T(x) q(#)
16 2:03253 121 +2-033 +2 +2-033
15 3-43560 48 2-523 2 2:523
14 25-17830 48 23-530 22 23-530
13%* 37-65109 6 26-4484 159 26-4475
12 128-21874 8 110-3765 97-6 110-3753
11 166-44768 110-1897 62-3 110-1854
10 345-07256 267-6059 214-9 267-6012
9% 378-908 230-82458 118-57 230-81457
8 524-327 352-81823 245-07 352-80853
7 468-88 251-93970 111-84 251-92717
-6 443-576 240-97028 128-59 240-96018
5% 304-08 131-99133 8 45-894 131-98362 1
4 190-68 70-29492 8 17-070 70-29013 3
-3 89-6 24-55840 4 +6-252 T, 24-55666 7
2 32-8 3-94190 9 —~2:747 T, +3-94130 6
1 8 +0-00001 0 g, —0:00000 1 ¢,
0 1 —0-00006 7 ¢, +0-00000 0 g,
M —0-099
D +8-07
ol —0-00002 3. +0-00000 0
op —0-00004 0 —0-00000 0
TABLE 6. BAIRSTOW’S PROCESS
l —1-6845 —1-68456 6
b —0-10169 —0-10172 9
s q(%) T(x) 9(x)
16 +2-03253 121 +2-03253 +2-03253 121
15 3-22891 670 3-:02223 3-22883 743
14 21-42615 744 17-69503 21-42590 543
13 30-03315 987 23-14281 30-03227 031
12 89-07231 377 56-91164 89-07024 337
11 106-79905 861 62-02765 106-79531 175
10* 184-16985 12 81-9946 184-16367 61
9 180-27675 36 67-4531 180-26946 23
8 195-76054 26 50-7813 195-75250 07
7 145-29691 90 26-5082 145-29048 68
6 99-04212 23 10-8054 99-03773 70 .
5 49-25574 65 3-:5039 49-25357 59
o 4 18-83472 81 +0-2767 18-83387 85
J 3 4-71339 15 —1-217 Ty 4-71314 90
K 2 +0-59359 57 +0-251 T, 0-59362 47
1* —0-00007 1 ¢, +0-00000 1 g,
0 +0-00009 5 g, —0-00000 0 g,
M +2-025
D +2-527
8l —0-00006 6 +0-00000 1
op —0-00003 9 —0-00000 0
(8) Multiple zeros
Suppose ¢ is a zero of f(x) of known* multiplicity m, and that @ is an approximation to «.
Then « is a simple zero of f™=D(x), and the iteration methods of § 7 may be employed here
5 in full, replacing f(x) by f®~D(x). If y=a—a, then from (7-1), for example, we obtain
(m—1) a
1=~ + 07 1) (571

* Polynomials which are known a priori to have multiple zeros seldom arise in practice. The detection
and iteration of multiple zeros during the normal process of solution are covered in §9.
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Another formula, proposed by Bodewig (1949), is a modified form of Newton’s rule:

__mfa) 2 .
=47 TOUn ). (8-2)

In practice this formula is inferior to (8:1). It involves the ratio of two small quantities
A@) = 0(ln ™, f'@) = O(n |,
whereas, in (8-1), S™(a) =0(1) and f™Y(a)=0(|7]),

and this difficulty does not there arise.

(9) Zeros whick are very close together

If a polynomial is particularly ill-conditioned and some of its zeros are extraordinarily
close together, their direct separation by root-squaring, notwithstanding the great power
of this process, may not be the quickest method of solution.-As we have seen in § 3, severe
cancellation occurs in such cases, and it is necessary to retain a very large number of signi-
ficant figures during the early transformations. An example of such a polynomial was given
at the end of § 3.

For simplicity we confine our attention here to polynomials with only one group of close
zeros, or, alternatively, with one conjugate pair of groups of such zeros (the extension to
polynomials with more groups is straightforward and of no special interest). The treat-
ment of the difficulty then falls into four cases, depending on whether or not the number
of close zeros is small compared with the degree of the polynomial, and whether or not the
zeros cluster in the neighbourhood of a real point.

(a) Several zeros near a real point
Let a be a real point around which there cluster several of the zeros of
fx)y=ay+a,x+...+a,x" (9-1)

If no a priori knowledge of a is available, a suitable value can be deduced from the settled
coefficients bordering the group of close zeros in the root-squaring transformations of

S(%)-
We perform a root-reducing transformation, producing a polynomial whose zeros are
well separated. This could be done by constructing the polynomial

fera) =f(@) +of (@) +2 LD N, (9-2)

but the labour entailed in computing the coefficients f*)(a)/s! directly or by Horner’s
method is not inconsiderable and can be largely averted if, instead, we construct the

polynomial F(x) = Byt Fy x4 Fys ...+ F, 20, (9-3)
where _ s+1 s+2 n

Fs'—“s—{_( 1 )“s+l+( 2 )“s+2+"’+(n____s) an’} (9.4)
and ag = a’.a,.
- If the zeros of f(x) are x;, X, ..., x, then the zeros of F(x) can be denoted by &,,&,, ..., ¢,
where ¥, =a(l4+¢&,) (s=1,2,...,n). (9-5)

VoL. 244. A. 53
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The zeros &, though small themselves, bear ratios to one another which are not small and,
therefore, are well separated from the standpoint of root-squaring.
In practice the coefficients F, are computed by (9-4), using as checks the reciprocal

relations
s+1 s+ 2
to= B (T ot (D7) Bt (20 ) B (9-6)
For s = 0 this becomes ay = Fy—F\+Fy—...4+(—)"F, (97)

and this alone is usually an adequate check, the principal practical use of (9-6) with non-
zero values of s being to help locate errors when (9-7) is not satisfied.

The polynomial F(x) can be solved by the standard methods already described. The real
zeros x, of f(x) are then obtained by using (9-5) directly, and the quadratic factors x> —px —1
(corresponding to the conjugate pairs of complex zeros of f(x)) are obtained from the

equations p=a(@+2), [=a(A—v—1), (9-8)
where x? —wx —A is a factor of F(x).

(b) Several zeros near a conjugate pair of points

The method of (a) remains applicable in theory to this case, the practical modification
being that a is now complex and F(x) is a polynomial with complex coeflicients, the direct
solution of which entails four times the labour of solving a similar real polynomial of equal
degree (cf. §11). The following less laborious procedure, which depends on the solution of
a real polynomial of the same degree, is due in principle to Ostrowski (1940).

Let a common approximation to one of the groups of zeros be denoted by a=u(1-+1iv),
where « and v are both real.* We then proceed as follows.

(i) Transform f(x) into F(x), as indicated by equations (9:3) and (9-4), taking a = u
n (9-4). The zeros of F(x) cluster around the points ¥ = +iv.

(ii) Perform one root-squaring transformation on F(x) to obtain a polynomial F,(x),
the zeros of which cluster around the single point x = v2.

(iii) Transform F(x) into a polynomial ¢(x), using formulae analogous to (9-3) and (9-4),
taking @ = v?in (9-4). The zeros of ¢(x) cluster around the origin x = 0, and this polynomial
(which is real and of the same degree as f(x)) may be solved by root-squaring since its zeros
are, in general, adequately separated for this purpose.

If the zeros of #(x) are denoted by , then it is easily verified that their relation to the

zeros x, of f(x) is given by (%, — )2 Fu22(148) = 0. (9-9)

This equation may be used directly to compute x, from real values of {, the ambiguity
(concerning which of two possible values is a genuine zero) being resolved by substitution
in f(x). For complex values of {; a more convenient form of the relation is given by the

expressions  p=2utS, [ = —u(S+utuw?R), 1

9:10
where R=(1+P—-L)}, S= j:uv(QR—P—Q)*.J (9-10)

* If a is purely imaginary we cannot write it in this form, but a suitable modification of the given pro-
cedure can be made. Stage (i) is omitted and if a=1iv, stages (ii) and (iii) are performed taking /(x) in place
of F(x). The polynomial whose zeros are given by (3:15) was solved with little difficulty using this technique,
the value of a being taken as 10-#.
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Here 2 —Px— L is a factor of ¢(x) such that P?++4L <0, and x2—px—! denotes the corre-
sponding factor of f{x). The sign ambiguity is resolved by dividing f(x) by x2—px—/.

(¢) A few zeros near a real point

The numerical procedure for this case can be made to be a shortened version of that
suggested for case (a).

Letus suppose that the root-squaring of /(x) indicates that thereis a group of m unseparated
ZETOS X}, Xy, ..., X, (52y), lying in the neighbourhood of a real point # = a, m being small
compared with n. Then from (a) we see that the values of x, are given by equation (9-5),
where {£} are the zeros of the polynomial (9-3). The m zeros of least modulus must be
1, &y, ..., E,; let the greatest of these have a modulus equal to ¢ and let the least of the zeros
Eni1>Emras -5 &, have a modulus equal to £. Consider

Gx)=F,+F x+Fyx?+ ...+ F, x™. (9-11)
We sshall show* thatify,, 7,, ...,7,are the zeros of this polynomial, suitably enumerated, then
£, — 1,4 0(¢E) (9-12)

for every simple zero £, of F(x), such that
£, —&,+0(e), whenr#s. (9-13)

In the first place we note that it is sufficient to take £ = 1; the extension to other values
follows by a simple change of scale. Using equation (9-3), we see thatif 1<<s<<m, then

G(E) = = [Fpn &1+ F 8024 B8] = O, (9-14)
and also  G'(§) = F'(§) —&7[(m+1) Fpppy+ (m+2) Fypppbs+ o 0B, 8777
=F'(£)+0(em). (9-15)
Theresult (9-12) will follow from Newton’s rule applied to G(x) for x = £, if we can show that
[G'(€)]7H = O(e!™™). (9-16)
Now writing F(x) in the form
F(x) = Fy(x—&) (v—8) oo (¢ —E5) (1—Epin) - (38, (9:17)
we see that if 1 <<s<<m, then
FOE) = 0(m™) (v =0,1,2,...,m). (9-18)
Also, we Bave gy x) = dF(E) 4 2 FYE) + o PO, (9:19)

It is now clear that F’(,) cannot be o(¢™~!) for otherwise it would follow from (9-18) and
(9-19) that F(£,+x) had at least two zeros of the form x = 0(¢), contrary to the hypothesis
(9-13). Hence from (9-15), G'(&,) also cannot be o(e™~!) and the results (9:16) and (9-12)
under the condition (9-13) are now established when E = 1, and therefore also for all E.

If £, is such that there is another} zero of F(x) in the neighbourhood |x—§ | = o(e),
then the relation (9:12) is not necessarily true; a further shortened form of root-reducing
transformation is needed to separate such zeros.

* The proof which follows is not intended to be mathematically rigorous; a full analytical treatment here
might obscure the essential numerical simplicity of the result. In any case, in practical applications the

approximate zeros derived in this way would invariably be tested and, if necessary, iterated by recourse

to one of the polynomials F(x) or f(x).
t This includes of course the possibility of £ being a multiple zero.
53-2
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Thus the m smallest zeros of F(x) can, as a first approximation, be taken to be equal to
the zeros of G(x); more accurate values can then usually be obtained by iteration in F(x).
Since the degree of G(x) is low compared with that of F(x), this procedure saves a consider-
able amount of labour.

(d) A few zeros near a complex point

In a similar way we can shorten the procedure described in (). If there are m zeros of
S(x) clustered in the neighbourhood of x = a, where « is now complex, then good approxima-
tions to the small zeros of ¢(x) are obtained by solving the polynomial which comprises
the 2m+1 terms of lowest degree of @(x).

For the cases m = 2 and 3 it is simpler still to follow the procedure of (¢) taking a complex
value of a. The polynomial G(x) is then a quadratic or cubic with complex coefficients and
can be solved explicitly without difficulty.

ParT CG. MISCELLANEOUS TOPICS
(10) Rounding errors in the coefficients
During the numerical processes of solution of the polynomial
S(x) = ay+a,x+a,x%+ ... +a,x", (10-1)

we have, so far, regarded the coeflicients a, as exact quantities. We now consider the effect
upon the zeros of small changes in these coefficients.

Let a be a simple zero of f(x). Then if a,, is increased by da,,, the value of f(a) changes
from zero to a™da,,, to the first order of approximation. Hence, by Newton’s rule, the corre-
sponding change in the zero is da= —a™da,,[ f'(¢)]~!. Proceeding to the limit, we obtain

dat am
9, = (@) (10-2)

The direct use of this formula enables us to determine quite simply the limitations of
accuracy that rounding or observational errors in the coeflicients impose upon each real
simple zero. The value of f'(«) is usually available in these cases from the iterations or
checking of a.

For complex zeros, a more convenient form of the result may be derived. Let us suppose
that the quadratic factor x2— px —/, corresponding to the pair of simple zeros r e+, has been
iterated by the use of Bairstow’s formula (7-11). Then by differentiating equation (7-9)
and using (7-10), it is seen that

J'(re?) = (2re?—p) (Tyr?+To—pTy) +q,,
= 2irsin (T ,—rcos8T,+irsind77), (10-3)

since p = 2rcosf and ¢, supposedly vanishes at the close of the iterations. Hence, using
equation (10-2), we obtain
d(reiv) B jpm—1 gmit
da, — 2sinf(Ty—rcos0T,+irsinfT;)"

(10-4)
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For estimating the accuracy of the zero, it is sufficient to know the modulus

d(re) - 272 |-,
da,, 2|sm6]|T —pT T T
7m

that is,

lﬁ (rei?) (10-5)

@y

where D is given by (7-11) and its numerical value is known from the iterations.

From (10-2) we see that zeros which are close together are the most sensitive to slight
perturbations in the coefficients, since at such zeros the derivative is necessarily small.
This is the phenomenon of ill-conditioning, not uncommon with high-degree polynomials,
to which reference has been made in the Introduction and in § 3.

For multiple zeros, the results corresponding to (10-2) involve higher derivatives than the
first. Such zeros no longer retain their multiplicity for arbitrary small changes in the
coefficients, but break up into groups of simple zeros, the process being extremely sensitive.

(11) Complex coefficients

The numerical solution of high-degree polynomials with complex coefficients appears
to have received little attention. The problem is not an intractable one, and we consider
here, in outline, some practicable methods. Insufficient experience precludes an exhaustive
discussion of the relative merits of such methods.

The general nature of the zeros of such a polynomial is of course different from the nature
of those of a polynomial whose coefficients are all real. Real zeros are rare and complex -
zeros no longer necessarily occur in conjugate pairs, so that repeated moduli are the
exception rather than the rule.

The root-squaring process can be readily adapted and it will determine the moduli of
the zeros. The coefficients in the array (2-5) are now complex numbers, so that the labour
involved is about four times that of the root-squaring of a similar real polynomial of equal
degree. The evaluation of the phases of the zeros using the known moduli can be performed
by methods given in §4 for real polynomials. Iteration of zeros, when necessary, can be
effected by Newton’s rule (7-1), obtaining the values of /(@) and f’(a) by direct calculation.

An alternative approach to the problem is to make it depend on the solution of a poly-
nomial with real coefficients of double the original degree. Write the given complex
polynomial in the form

S8) = 3 (by+ic) (11:1)

and let f +iy, (s = 1,2, ...,n) be its zeros, where b, ¢, A, and y, are all real. Consider the
polynomial

(%) =S(%) f(x) = 2 ", (11-2)

Where ¢ = b2+62+22 ( s—=m s+m+cs—-mcs+m)11

(11-3)
¢23+1 =2 z (bs m s+m+1+ -m s+m+1) J
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These coeflicients are real and ¢(x) can be solved by the standard methods already described.
The zeros of ¢(x) are {f,--iy,} and the resolution of the ambiguities may be effected by
substitution in f(x). The total labour entailed by this method is about eight times that
required to solve a similar real polynomial of equal degree.

(12) Checking

The iteration processes provide sound individual checks on the zeros, but even so it is
advisable to apply further simple group checks based upon the algebraical properties of
the zeros. If the polynomial is denoted by (10-1), its real zeros by «,a,, ..., ,, and the
quadratic factors corresponding to the pairs of complex zeros byx2 —p.x—I (s =1,2,...,k)

(m~+2k = n), then four of the most useful of such checks are

H“s Hls = (_),l+kg“0, ZOCS—{—Z'])s = —aZ—.l_,
-
LS L R W I BID) A = s LS )
ls s g ’ : y a,%

(13) Summary

The solution of an arbitrary polynomial of high degree is best effected in several steps.
First, the root-squaring process is used to obtain the moduli of the zeros, both real and
complex. Secondly, the phases of the complex zeros are evaluated by means of the ‘ highest
common factor’ process described in §§ 4 and 5. Thirdly, higher accuracy when needed can
be achieved by an indirect or iterative procedure. The most suitable iteration formulae are
Newton’s rule, for real zeros, and Bairstow’s formula, for complex zeros.

Except in special cases it is uneconomic to use iterative methods from the start, without
a reasonably accurate knowledge of the location of the required zero.

Polynomials of high degree present special difficulties in large-scale cancellation and
subsequent loss of significant figures. In §§3, 5 and 9 this phenomenon was examined in
some detail and remedies were suggested.

The amount of work involved and the time taken to obtain all the zeros depend on several
factors:

(i) the cube of the degree of the polynomial,
(ii) the degree of ill-conditioning (§§ 3 and 9),

(iii) the proportion of complex zeros,

(iv) the order of accuracy required.

The sixteenth-degree polynomial given by (2-6), which is moderately ill-conditioned
and has no real zeros, was solved by an experienced computer, using a desk calculating
machine, in 16 hours, to an accuracy of about five significant figures.

The work described above has been carried out as part of the research programme of
the National Physical Laboratory, and this paper is published with the permission of the
Director of the Laboratory.
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